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ABSTRACT

Context. The 11 year solar cycle is known to affect the global modes of solar acoustic oscillations. In particular, p mode frequencies
increase with solar activity.
Aims. We propose a new method to detect the solar cycle from the p-mode autocorrelation function, and we validate this method using
VIRGO/SPM photometric time series from solar cycles 23 and 24.
Methods. The p-mode autocorrelation function shows multiple wavepackets separated by time lags of ∼ 123 min. Using a one-
parameter fitting method (from local helioseismology), we measure the seismic travel times from each wavepacket up to skip number
40.
Results. We find that the travel-time variations due to the solar cycle strongly depend on the skip number, with the strongest signature
in odd skips from 17 to 31. Taking the noise covariance into account, the travel-time perturbations can be averaged over all skip
numbers to enhance the signal-to-noise ratio.
Conclusions. This method is robust to noise, simpler to implement than peak bagging in the frequency domain, and is promising
for asteroseismology. We estimate that the activity cycle of a Sun-like star should be detectable with this new method in Kepler-like
observations down to a visual magnitude of mK ∼ 11. However, for fainter stars, activity cycles are easier to detect in the photometric
variability on rotational timescales.
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1. Introduction

In the case of the Sun, magnetic activity follows an 11 year cy-
cle, which is seen in many observables on the solar surface and
in the atmosphere. This cycle is prominent in the variations of
the sunspot number and the sunspot area, which are used as the
standard proxies of solar activity. In the chromosphere, solar ac-
tive regions lead to increased emission, which is most evident
in the core of the CaII H&K lines (e.g., White et al. 1998). Ac-
tivity cycles on Sun-like stars produce both long-term spectral
and photometric variations detected with ground-based spectro-
scopic (see e.g. Mount Wilson Observatory HK Project (Wilson
1978; Duncan et al. 1991; Baliunas et al. 1995) and photometric
observations (see e.g., Radick et al. 2018). High-precision space
photometry made it possible to find evidence for activity cycles
in thousands of stars (Reinhold et al. 2017).

Methods of helio- and asteroseismology provide an indepen-
dent way to study magnetic activity. The sunspot cycle is known
to affect solar p modes, as seen in the variations of their fre-
quencies (see e.g., Woodard & Noyes 1985; Fossat et al. 1987;
Jiménez-Reyes et al. 1998; Chaplin et al. 2003; Salabert et al.
2004; Howe et al. 2018), line widths, amplitudes (see e.g., Pallé
et al. 1990; Anguera Gubau et al. 1992; Salabert et al. 2007), and
energy supply rates (Kiefer & Broomhall 2021). Mode frequen-
cies and line widths increase with activity, and mode amplitudes
decrease (see e.g. Basu 2016, for a review). In particular, the
large frequency separation is affected (Broomhall et al. 2011).
Modes with higher frequencies are more affected, from which

we deduce that magnetic perturbations act on the modes in the
surface layers (Libbrecht & Woodard 1990). Santos et al. (2016)
find that sunspots contribute around 30% of the frequency shifts
of low-degree p modes. A contribution from solar activity at high
latitudes is not excluded (Moreno-Insertis & Solanki 2000).

The first detection of activity using stellar p modes was re-
ported for the F5V CoRoT star HD49933 by García et al. (2010).
A modulation of the mode frequencies and amplitudes over
120 days was detected, with higher frequencies corresponding
to smaller amplitudes. In addition, frequency shifts are larger
at higher frequencies, indicating a near-surface effect (Salabert
et al. 2011). Using Kepler high-cadence (1 min) data, Salabert
et al. (2018) and Santos et al. (2019) extended this analysis to a
larger sample of Sun-like stars. Frequency shifts decrease with
stellar age and surface rotation period and correlate with effec-
tive temperature.

Measuring the frequency shifts of individual modes —which
are often much lower than 1 µHz —- is very challenging, espe-
cially at low signal-to-noise ratios. Palle et al. (1989) proposed to
use a cross-correlation technique to measure a mean frequency
shift over all modes in the power spectrum. Régulo et al. (2016)
and Kiefer et al. (2017) applied the cross-correlation method to
analyze Kepler stars. In more than half the stars, periodic vari-
ations of the mean frequency shifts were accompanied by vari-
ations in other activity proxies, such as the photometric activity
(Santos et al. 2018).
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Fitting oscillation power spectra is a delicate enterprise that
requires many parameters: several parameters for each mode and
parameters for the background noise. Here, we propose to ex-
tract seismic information from the autocovariance of the inten-
sity time series, I, over a segment of the data of length T :

C(t) =
∫ T

0
I(t′)I(t′ + t) dt′. (1)

The function C displays a series of wavepackets that are nearly
regularly spaced in time, each associated with a particular arrival
time (or skip number). For each skip number, we extract a sin-
gle parameter: the travel-time perturbation between C and the
smooth reference Cref . This one-parameter fit —first developed
in time–distance helioseismology (Gizon & Birch 2002)— has
been shown to be very robust to noise Gizon & Birch (2004) and
is very easy to implement (Section 2.2.2). It has become a stan-
dard method in this field and has been used, for example, to infer
the Sun’s meridional flow (Gizon et al. 2020).

For each wavepacket, the travel-time perturbation τ is ex-
tracted from C(t) by cross-correlation with a sliding reference
Cref(t − τ). The function Cref is an estimate of the expectation
value of C, obtained from a model or from an average over many
realizations of C. Because the function C is noisy, the travel-
time perturbation measured by cross-correlation with Cref is also
noisy. To handle this problem, the idea is to replace C by the
smooth function Cϵ = ϵC + (1 − ϵ)Cref , where ϵ is small. The
travel-time perturbation ϵτ can now unambiguously be measured
from Cϵ by comparison with the sliding reference Cref . Formally,
this procedure can be summarized as follows:

τ = lim
ϵ→0

{
1
ϵ
× travel time perturbation extracted from Cϵ

}
. (2)

The limit ϵ → 0 ensures that the above calculation is meaningful
irrespective of the level of noise in C. For the s-th wavepacket,
we have

τs = lim
ϵ→0

argmin
t′

∫
wins

[
ϵC(t) + (1 − ϵ)Cref(t) −Cref(t − ϵt′)

]2 dt,

(3)

where the integral is over a time interval wins centered on the s-
th wavepacket. The minimization can be carried out analytically
to obtain

τs =

∫
Ws(t) [C(t) −Cref(t)] dt, (4)

where the function Ws is smooth and depends only on Cref and
its first derivative C′ref = dCref/dt; see Gizon & Birch (2004)
and Section 2. This definition of travel time, Equation (4), is
extremely robust to noise and is straightforward to compute.
Furthermore, the travel-time perturbation is linear in the pertur-
bation to the autocorrelation function. This property ensures a
simple connection between travel-time measurements and per-
turbations to the stellar model. Using travel-time kernels that de-
scribe the sensitivity of the measurements to localized changes
in the solar interior (e.g., Gizon & Birch 2002; Gizon et al. 2017;
Fournier et al. 2018), we can interpret the seismic data by solv-
ing a linear inverse problem. In addition, this definition of travel
time enables us to model the noise covariance matrix (Gizon &
Birch 2004; Fournier et al. 2014).

The paper is organized as follows. In Section 2, we present
the VIRGO/SPM data that cover the last two solar cycles and

we describe the data analysis. In Section 3, we measure the solar
seismic travel times over segments of the data (T = 90 days)
and show that the travel times change with the solar cycle. The
implications of our findings for the detection of activity cycles
on other stars are discussed in Section 4.

2. Method

2.1. Observations

We use Sun-as-a-star observations from the VIRGO experiment
on board the Solar and Heliospheric Observatory (SOHO). The
VIRGO/SPM instrument is a three-channel full-beam Sun pho-
tometer (Fröhlich et al. 1995, 1997). It measures solar brightness
variations in the continuum through three filters that are centered
on wavelengths 402 nm (blue), 500 nm (green), and 862 nm (red)
with a temporal cadence of δt = 1 min. The bandwidth of each
filter is 5 nm. The response functions of the three channels are
located near the base of the solar photosphere, within ±10 km of
the τ500 nm = 1 surface (see Fligge et al. 1998, for details). The
blue and green channels are more sensitive to the lower part of
the solar atmosphere, the red channel to higher layers (Jiménez
et al. 2005).

The VIRGO/SPM 1 instrument has been observing the Sun
continuously since January 1996, except for two long gaps. In
the summer of 1998, a gap of about 100 days was due to a ro-
tation maneuver of the spacecraft that went wrong. The second
gap of about one month occurred in January 1999 as a result of
spacecraft problems. In addition, 5–8% of the data are not us-
able depending on the channel (e.g., Jiménez et al. 2002). The
data that we use here cover 22 years from 23 January 1996 to
26 June 2018 (solar cycles 23 and 24). The data are detrended
and gaps are filled using linear interpolation. Two segments of
the data are selected in Figure 1 to display the temporal vari-
ations on the rotation timescale and on the p-mode oscillation
timescale.

2.2. Data analysis

2.2.1. Autocovariance function

Let us consider the intensity, I(t), measured in one of the VIRGO
channels at time cadence δt. We split the time series into M time
intervals of equal duration T = (2K + 1)δt, specified through an
integer K. For example, for K = 64800 we have T = 90 days.
The central time of each segment of the data is

ti = t00 + i ∆t, 0 ≤ i ≤ M − 1, (5)

where t00 is a reference start time and ∆t is the sampling (e.g.,
2 months). These segments may overlap. Nonoverlapping con-
tiguous segments have ∆t = T . In each segment of the data, time
is conveniently specified by two indices, i and k:

tik = ti + kδt, (6)

with 0 ≤ i ≤ M − 1 and −K ≤ k ≤ K. Over each time segment,
we define the time series {Ii} such that

Ii(kδt) := I(tik), −K ≤ k ≤ K. (7)

Figure 2 summarizes the notations.

1 The VIRGO/SPM datasets are available at http://irfu.cea.fr/
dap/Phocea/Vie_des_labos/Ast/ast_visu.php?id_ast=3581

Article number, page 2 of 15

http://irfu.cea.fr/dap/Phocea/Vie_des_labos/Ast/ast_visu.php?id_ast=3581
http://irfu.cea.fr/dap/Phocea/Vie_des_labos/Ast/ast_visu.php?id_ast=3581


V. Vasilyev and L. Gizon: Detecting stellar activity cycles in p-mode travel times

Fig. 1. One-year (A) and two-hour (B) segments of VIRGO/SPM brightness data (red channel). In both plots, the origin of time is 28 March 2014.

t

ti−1 ti ti+1ti − Kδt ti + Kδt

{Ii}

{Ii+1}
︷                                                   ︸︸                                                   ︷T

︸                                         ︷︷                                         ︸
∆t

-

Fig. 2. Schematics showing how the data segments {Ii} are constructed from the original time series of the observed intensity.

To each segment of the data, we apply a Fourier transform:

Îi(ω j) =
K∑

k=−K

Ii(k δt)e−iω jkδt, (8)

where ω j = j∆ω is the frequency and ∆ω = 2π/T is the fre-
quency resolution. The autocovariance function is given by

Ci(kδt) =
1
T

K∑
j=−K

∣∣∣Ii(ω j)
∣∣∣2 eiω jkδt, (9)

where kδt is the correlation time lag.
Figure 3A shows the autocovariance functions calculated for

time series in the red, green, and blue VIRGO/SPM channels
covering the same T = 90 day segment in 2018 from 28 March
to 26 June. The p modes are clearly seen near time lags 250 min
and 500 min (the wavepackets with s = 2 and s = 4). At zero
time lag, the autocovariance function has a sharp peak with a
width of ∼ 20 min due to the solar granulation. This granulation
peak at zero time-lag is well reproduced in Figure 3B using a
numerical simulation of solar magnetoconvection simulations in
a small Cartesian box (Beeck et al. 2013).

To focus on the p modes, we filter the data by multiplying
with a Gaussian filter F(ω j) centered at 3 mHz with a full width
of 2 mHz:

Ci(k δt) =
1
T

K∑
j=−K

∣∣∣Ii(ω j)F(ω j)
∣∣∣2 eiω jkδt, (10)

where kδt is the correlation time lag. We separately filter the pos-
itive and negative frequency domains using a Gaussian filter with
a full width at half maximum (FWHM) of 2 mHz centered on

about 3 mHz and −3 mHz, respectively. In Figure 3C, we show
the autocovariance function computed with the filtered data col-
lected over 90 days.

Next, we construct a reference autocovariance function by
averaging Ci over all the time intervals:

Cref =
1
M

M−1∑
i=0

Ci. (11)

In Figure 3D, we show the reference autocovariance function
computed by averaging over M = 91 segments of data cover-
ing 22 years in total. In the time-lag range from 0 to 3.5 days,
there are about 40 p-mode wave packets. To each wave packet,
we assign an index s equal to the number of skips that waves
forming the given wave packet have before coming back to the
original point. We denote the total number of wave packets used
in the analysis as Nskips. The first wave packet, denoted s = 1,
arrives with a time lag of 1/∆ν, where ∆ν is the large frequency
separation:

1
∆ν
= 2
∫ R⊙

0

1
c

dr ≈ 123 min, (12)

where c(r) is the sound speed profile and R⊙ the solar radius.
During this time, waves travel from the surface to their lower
turning points and are partially reflected back to the surface. Due
to the very small amplitude of this wave packet, we exclude it
from the further analysis. The waves that are not reflected back
travel further, cross the Sun, reach the surface, get reflected, and
travel back. They arrive with a time lag of ≈ 240 min, and we
denote them wave packet s = 2. With an increase in the num-
ber of skips, the penetration depth of p-modes decreases, and
depending on the perturbations of the solar structure, p-modes
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Fig. 3. Autocovariance functions of intensity time series. (A) Autocovariance function of the VIRGO/SPM data (T = 90 d). The red, green, and
blue curves correspond to the three channels. (B) Autocovariance of MURaM solar convection simulations (T = 15 hr). (C) Autocovariance
function for the p-mode data computed for a segment of VIRGO data with T = 90 days (red channel). (D) Reference autocovariance function
obtained by averaging over M = 91 consecutive segments covering 22 years. The first seven wavepackets are labeled s = 1 through 7. The curves
in panels (C) and (D) are computed from filtered time series (Gaussian filter centered on 3 mHz with a full width of 2 mHz). (E) Zoom onto
wavepacket s = 4 and width of the temporal window function f4(t).

can travel faster or slower. In the autocovariance function, this
causes a negative or positive time lag of the wave packet relative
to the wave packet with the same skip number in the reference
autocovariance.

2.2.2. Travel-time measurements

We use the definition for the travel time introduced by Gizon &
Birch (2004). For a given p-mode wave packet s, it is a time lag
that minimizes the difference between the measured autocovari-
ance Ci and the reference autocovariance Cref :

τs(ti) = δt
∑

k

Ws(k δt) [Ci(k δt) −Cref(k δt)] , (13)

where ti is defined in Equation 5, and Ws(k δt) is the weight for
the s-th wave packet:

Ws(t) = −
fs(t) C′ref(t)

δt
∑

k fs(k δt)[C′ref(k δt)]
2 , (14)

where fs(t) is the window function to isolate the s-th wave
packet, and C′ref is the time derivative of the reference autocovari-
ance function (computed in Fourier space). By construction, the
window function is only nonzero in a time-lag interval around
the wave packet s. In Figure 3E, we show the measured and the
reference autocovariance for the wave packet s = 4, and the win-
dow function used to isolate it. Following the above approach,
we measure travel times for Nskip = 40 wave packets with skips
from s = 2 to 41.

Article number, page 4 of 15
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Fig. 4. Measured travel times τs(ti) for all wavepackets with s ≤ 41. The red curves show the filtered data τs,smooth(ti) according to Equation 15. The
value of s is written in the top left corner of each plot. The data analyzed here are from VIRGO/SPM (red channel) divided into non-overlapping
segments of T = ∆t = 90 days in length (see Figure 2).

3. Results

3.1. Solar-cycle variations in the travel times

In Figure 4, we show the travel times τs as functions of ti for
the years 1996–2018 and for each skip number s ≤ 41. A mod-
ulation due to the 11 year solar cycle is seen, except for skips
s = 3 and 5. Near cycle maximum, the travel times are shorter
(negative τs), while they are longer near cycle minimum. The
relative variations in travel time induced by the solar cycle de-
pend on the skip number and on the cycle number (23 or 24). For
example, the imprint of the sunspot cycle is very easy to see in
the travel time variations for the odd skips from 15 to 35. On the
contrary, the cycle is difficult to see in the variations of skips 3,
5, 7, 9, 24, 26, 28, and 41. The noise in the travel times clearly
depends on the skip number. For example, skips 3, 39, and 41
are particularly noisy.

We now wish to measure the amplitude of the variations due
to the solar cycle and its uncertainty in each of the time series
τs shown in Figure 4. For each skip number s, we estimate the
signal by applying a low-pass filter to the data, such that only
periods longer than 1.5 years remain. This threshold also lets
through the quasi-biennial variations (e.g., Bazilevskaya et al.
2014). To filter the data, we use a sixth-order Butterworth filter
H6(ω,ωc) = (1 + (ω/ωc)12)−1 with a cut-off frequency of ωc =
2π/(1.5 yr):

τs,smooth(ti) =
1

M∆t

M−1∑
q=0

H6(ωq, ωc)τ̂s(ωq)eiωqti , (15)

where ωq = 2πq/(M∆t) and τ̂s(ωq) is the Fourier transform of
the travel times. For Figure 4, we have M = 91 and ∆t = 90 days.
The noise in the travel times can be estimated by computing the
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Fig. 5. Comparison between the sunspot number (SSN) smoothed over 13 months (A) and seismic travel times, τs, for skip number s = 19 (B)
measured in the red VIRGO/SPM channel data. Vertical dashed lines indicate cycle maximum and minimum. The red line represents the filtered
data, τs,smooth(t), which we use to measure the amplitude of the travel time variations due to the solar cycle As (black arrow). (C) Residuals between
τs and τs,smooth. (D) Power spectrum of τs, normalized to the power of the 11-year harmonic. A Butterworth filter (red line) is used to extract
τs,smooth(t).

standard deviation of the residuals:

σs =

√√√
1

M − 1

M−1∑
i=0

[
ns(ti)

]2
, (16)

with

ns(ti) = τs(ti) − τs,smooth(ti). (17)

We define the times tSSN_max and tSSN_min to correspond to the
solar cycle maximum in November 2001 and the cycle minimum
in December 2008. Next, we define the travel-time difference:

As = −τs,smooth(tSSN_max) + τs,smooth(tSSN_min). (18)

By construction, we expect As > 0 when the variations in travel
times are dominated by the solar cycle perturbations. For exam-
ple, in Figures 5A and B the variations of τ19(ti) are very clearly
anti-correlated with the sunspot number. Figure 5C and D show
the residual high-frequency noise in the travel times and how the
travel times are filtered for estimation of A19.

According to the definition of As, its variance is given by

Var(As) = 2σ2
s , (19)

where σs is given by Equation 16. Then, for each skip s, we
define the ratio between the signal due to the solar cycle and the
noise level as

S/Ns = As/(
√

2σs). (20)

In Figure 6A and B, we show As,
√

2σs, and S/Ns for skip num-
bers s = 2 to 41. We find that they strongly depend on skip num-
ber s. Surprisingly, the highest signal-to-noise ratios (S/Ns > 3)
are for odd skip numbers from s = 15 to 35. Skip numbers s = 3,
5, 7, 24 and 26 are very noisy (S/Ns < 0.5).

3.2. Noise correlations in travel times

The noise covariance matrix for τs is given by

Λss′ = E[nsns′ ] ≃
1

M − 1

M−1∑
i=0

ns(ti)ns′ (ti), (21)

where s and s′ belong to {2, 3, · · ·Nskip + 1}. The noise correla-
tion matrix is then Rss′ = Λss′/σsσs′ . Figures 6C-E show cuts
through the matrices Λ and R. As mentioned in the previous sec-
tion, the variance of the noise depends strongly on the value and
parity (odd or even) of s (Figure 6C). At a fixed s′, the noise co-
variance Λss′ and the noise correlation Rss′ depend strongly on
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Fig. 6. Detectability of the solar cycle in individual skip travel times. (A) Amplitudes of travel time variations due to the solar cycle, As, versus
skip number s (see Equation 18), with error bars of ±

√
2σs (see Equation 19). (B) Signal-to-noise ratios S/Ns = As/(

√
2σs). (C) Variance of

travel-time noise σ2
s = Λss. (D) Plot of Λs,s′=19 and (E) plot of Rs,s′=19. In all panels, the blue and red points show the even and odd values of s.

the skip number s. For example, for s′ = 19, the correlation is
large and positive (Rs,19 > 0.6) for odd skips from s = 15 to
23 and for even skips from s = 32 to 40, but the correlation is
negative for even skips from s = 12 to 22 (Figure 6D and E).

3.3. Travel-time averages and signal-to-noise ratio

Here, we construct a linear combination of the travel times that
takes the noise correlations into account in order to reduce the
overall noise and detect the solar activity cycle with the highest
S/N. Minimizing the variance of the noise can be achieved (1)
by transforming the travel times to statistical orthogonality and
(2) by applying a straight average (see, e.g., Kessy et al. 2018).
To construct a new set of statistically independent travel-time

measurements, we apply the standard transformation

τ̌s(ti) =
Nskip+1∑

s′=2

(
Λ−1/2

)
ss′
τs′ (ti), (22)

where Λ−1/2
ss′ is the whitening matrix. By construction, the co-

variance matrix of the whitened data is the identity matrix:

1
M − 1

M−1∑
i=0

τ̌s(ti)τ̌s′ (ti) = δss′ . (23)

Next, we compute a straight average of the whitened time series
over skips to obtain the average travel time:

τ(ti) =
1

Nskip

Nskip+1∑
s=2

τ̌s(ti). (24)

Article number, page 7 of 15
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Fig. 7. The average seismic travel time. (A) Measured average travel time τ (blue points) using Nskip = 40 τsmooth and the filtered data (red
line). The vertical arrow defines the amplitude of the 11 year cycle measured between active and quiet years. The VIRGO data were divided into
segments of length T = 90 days with a sampling time of 90 days. (B) Residuals between τ and τsmooth. (C) Power spectrum of τ (blue curve)
normalised to P11 = P(period = 11 yr). The red curve shows the Butterworth filter with a cutoff at 1.5 yr.

Fig. 8. Detectability of the solar cycle in the average VIRGO travel times. (A) Cycle amplitude A versus number of skips Nskip used in the average.
The colored area outlines the uncertainty ±

√
2σs (Equation 30). (B) S/N of the 11 year cycle as a function of Nskip. The data analyzed here were

divided into segments of T = 90 days in length with a sampling time of 90 days.

Equations 22 and 24 can be combined into one formula:

τ(ti) =
Nskip+1∑

s=2

αsτs(ti) with αs =
1

Nskip

Nskip+1∑
s′=2

(
Λ−1/2

)
ss′
. (25)

The average signal and noise components are

τsmooth(ti) =

Nskip+1∑
s=2

αs τsmooth,s(ti), (26)

n(ti) = τ(ti) − τsmooth(ti). (27)

The standard deviation of the average noise is

σ =

√√√
1

M − 1

M−1∑
i=0

[
n(ti)
]2
. (28)

Given these average quantities, the solar activity cycle am-
plitude becomes

A = −τsmooth(tSSN_max) + τsmooth(tSSN_min), (29)

with variance

Var(A) = 2σ2 (30)

and

S/N = A/
√

Var(A). (31)

Figure 7 shows the measured averaged travel time τ(ti), the aver-
age signal τsmooth(ti), and the noise level n(ti), all obtained after
averaging over Nskip = 40 skips. The improvement in the S/N
as a function of skip number is plotted in Figure 8. We find that
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αs

1/σs

1/σ2
s

Fig. 9. Signal-to-noise ratio associated with different averages of the
seismic travel times versus maximum skip number Nskip used in the av-
erage. For all Nskip, the weights αs used in the average (blue) provide
a S/N that is higher than the weights proportional to 1/σs (orange) and
1/σ2

s (green).

the S/N increases steadily with Nskip until Nskip ≈ 20, and then
reaches a plateau. The maximum S/N is approximately 8.

The weights αs lead to an average travel time, which has the
highest S/N. If, instead, we were to chose weights proportional
to 1/σs or 1/σ2

s , the S/N of the average travel time would be
significantly lower, as illustrated in Fig. 9.

4. Discussion

4.1. Comparison of seismic travel times with other activity
proxies

We use the frequency shifts of 60 low-degree modes with l ≤ 3
that were measured by Howe et al. (2017, 2018) from the Birm-
ingham Solar Oscillations Network (BiSON) data between 23
January 1996 and 31 December 2016. The individual mode
frequency shifts were measured for overlapping segments of
T = 365 days in length with a sampling time of ∆t = 91.25
days (only one-quarter of the data points are statistically inde-
pendent). The average frequency shifts, weighted by mode in-
ertia, are denoted by ⟨δν⟩ and are plotted in Figure 10E. In or-
der to directly compare the BiSON frequency shifts to the seis-
mic travel times and the photometric variability, we divided the
VIRGO data into the same overlapping segments (T = 365 days
and ∆t = 91.25 days). From these data segments, we obtain the
average travel time τ with Nskip = 40 and the photometric RMS .

Figure 10A-C displays all three data sets: the average fre-
quency shifts, the average travel times, and the photometric RMS
values. Variations over the 11 year solar cycle are clearly seen in
all three datasets. The variations of the average frequency shifts
and travel times are more closely related to each other than each
one of them is to the RMS data. This last point is also seen when
comparing the three power spectra (Figure 10D-E). In particu-
lar, the RMS data have significant power near periods of 3.8 yr
and 2.7 yr (with a gap near 3.2 yr), while the seismic data have
a smoother distribution of power for periods above 3.2 yr. The
noise level for periods below ∼ 2 years is similar in all three data
sets.

Figure 11 shows the photometric variability and seismic
travel times of the Sun using nonoverlapping segments of T = 90

days in length. We notice that the photometric variability time
series shows pronounced spikes in July 2000 and October 2003
during Cycle 23, which can be attributed to the transit of large
active regions. At the end of the month of October 2003, the in-
crease in photometric variability was particularly notable, reach-
ing almost 500 ppm due to the combined contributions of two
large sunspot groups (NOAA 10488 and NOAA 10486) that
shared the same longitude in the rotating frame (see Figure 11,
the top left panel). This is consistent with the simulations of Işık
et al. (2020), which show that longitudinal nests of active re-
gions may amplify the brightness variations on other Sun-like
stars compared to the Sun. Moreover, Pojoga & Cudnik (2002)
reported that a significant fraction of all solar active regions be-
long to longitudinal clusters on the surface, providing a possible
explanation for the larger photometric variability observed dur-
ing solar maximum than the seismic variability (Figure 11). In-
deed, unlike photometric variability, the seismic waves are not
sensitive to the longitudinal distribution of magnetic activity but
sense a longitudinal average.

Figure 12 shows the correspondence between the photomet-
ric variability, mode frequency shifts, and seismic travel times.
To reduce random noise, we used overlapping time segments of
T = 1 year in length. As anticipated, the two seismic measure-
ments are highly correlated (R = 0.98), although they are not
identical. We marked three dates on the plot, which correspond
to the same active phase of Cycle 23 as in Figure 11. Two of
these dates correspond to local maxima in the photometric vari-
ability, and the middle date corresponds to a maximum for the
seismic data (both frequency shift and travel time). The photo-
metric variability exhibits a distinctive double-peak pattern in
both Cycles 23 and 24, with the two peaks separated by approx-
imately 3 years. The seismic data also display local maxima, but
the variations are smoother and considerably different from the
photometric variability observed during Cycle 23. In particular,
the seismic data show a peak in September 2001, which has no
counterpart in the photometric variability. We also note that dur-
ing the rising and declining phases of Cycle 23, the relationship
between photometric variability and travel times shows hystere-
sis.

As demonstrated in the lower-left panel of Figure 12, the p-
mode frequency variations are found to be well-correlated with
the number of sunspots (gray curve) during cycles 23 and 24
(see also, e.g., Jain et al. 2012). However, the photometric vari-
ability does not exhibit a strong correlation with sunspot num-
ber, suggesting that seismic data and photometric variability are
independent diagnostics of solar activity. Combining these two
independent measures may provide useful insights into the num-
ber and spatial distribution of active regions on the surface.

Several activity proxies, including the sunspot numbers and
areas, the 10.7 cm radio flux, and the coronal index, exhibit vari-
ations on timescales ranging from 0.6 to 4 years, in addition to
the well-known 11 year cycle (for a review, see Bazilevskaya
et al. 2014). The origin of these variations remains unclear. Of
particular interest is the quasi-biennial variation observed in the
p-mode frequency shifts, which is also evident in the sunspot
numbers and areas, the 10.7 cm radio flux, and the coronal index
(Broomhall & Nakariakov 2015). To isolate the quasi-biennial
variations from the three datasets, we apply a Gaussian filter
centered around the period of 2.5 yr with a width of 1 yr (see
Figure 13). The correlation coefficient between the filtered travel
times (−τ) and the p-mode frequency shifts is found to be sig-
nificant at 0.88. However, over the period of 1996 – 2018, the
correlation between the seismic data and the photometric vari-
ability is close to zero. This is consistent with previous work by
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Fig. 10. Solar cycle variations in the seismic average mode frequency shift from Howe et al. (2017) (A), the seismic average travel time (B) and
photometric variability (C). The orange curve connects the data points. The data analyzed here was divided into overlapping time segments of
T = 1 yr in length and mid-points separated by ∆t = 91.25 d. (D-E) Power spectra of the activity observables shown in panels A-C. All power
spectra are normalized to the power at frequency 1/(9 yr). The abscissa shows the period in the left panel and the frequency in the right panel.

Broomhall et al. (2009), who also observed differences in the
phase between the seismic data and the 10.7 cm flux.

4.2. Prospects for detecting stellar activity cycles

In this section, we discuss the prospects for applying our method
to the analysis of short cadence stellar observations. Here, we
only consider distant stars with a magnetic cycle like that of the
Sun and with a rotation axis perpendicular to the line of sight.
Different geometrical and magnetic configurations (see, e.g. Gi-
zon 2002; Papini & Gizon 2019) are beyond the scope of this
study.

In order to simulate broadband photometric data for a Sun-
like star, we use the VIRGO/PMO6 total solar irradiance data
and introduce random noise to emulate additional shot noise.
The PMO6 data span from February 1996 to October 2018 with
a temporal cadence of 1 minute. We introduce noise such that the
S/N is Kepler-like for stars of given magnitudes, from mK = 8 to
13. Figure 14 shows example simulations (segments of duration
1 year and 2 hours) for stars with magnitudes of mK = 8, 10,
and 12. The monthly brightness variations are caused by tran-
sits of active regions (faculae and sunspots) that are visible to at
least mK = 12. On short timescales, the p-mode oscillations are
clearly visible up to a magnitude of mK ≈ 10.

We cut the light curves into 90 day nonintersecting segments
and measure the p-mode travel times for the first 40 skips. We
then compute the average:

⟨τs⟩ =
1
M

M−1∑
i=0

τs(ti), (32)

and, for the sake of simplicity, we define the noise with respect
to this average:

ñs(ti) ≈ τs(ti) − ⟨τs⟩. (33)

Using the noise covariance matrix

Λ̃ss′ =
1

M − 1

M−1∑
i=0

ñs(ti )̃ns′ (ti), (34)

we average the travel times over Nskip:

τ̃(ti) =
Nskip+1∑

s=2

α̃s τs(ti), (35)

with

α̃s =
1

Nskip

Nskip+1∑
s′=2

(
Λ̃−1/2

)
ss′
. (36)

We then extract the “stellar cycle” from the average travel time
by fitting a simple cosine function,

τ̃fit(t) = −a cos
[
2π(t − t0)/Pcyc

]
, (37)

where a, Pcyc, and t0 are parameters.
We estimate the photometric variability of each data segment

by calculating the RMS of the flux. In order to determine the
amplitude of the activity cycle, we fit a cosine function as de-
scribed previously. Figure 15A-F shows the activity cycle ob-
served in seismic travel times (left panels) and photometric vari-
ability (right panels) for apparent magnitudes of mK = 8, 10, and
12. The activity cycle is detected using both methods for mK = 8
and 10, but not for mK = 12, where shot noise is too high for
seismic measurements.

To identify the limiting visual magnitude at which the ac-
tivity cycle is detectable, we define S/N for each magnitude as:

S/N(mK) =
E[a(mK)]
σa(mK)

, (38)
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Fig. 11. Comparison between photometric variability and travel-time perturbations. Bottom left panel: Photometric variability computed from
nonoverlapping time segments of T = 90 days in duration. The three arrows correspond to three particular times in July 2000, September 2001,
and October 2003. The strong spike in the data in October 2003 is due to the transit of two large active regions (top left panel). Top right panel:
Seismic travel times computed for the same 90 day time segments. As above, the three arrows point to July 2000, September 2001, and October
2003. Bottom right panel: Scatter plot between photometric variability and seismic travel times. The correlation coefficient between these datasets
is R = 0.74.

where E[a] is the expectation value of the cycle amplitude and
σa the associated noise level, both obtained from 20 independent
realizations of photometric noise (see Figure 15I). In Figure 15J,
we find that S/N ∼ 1.5 for mK = 12. A clean cycle detection
is achieved for mK = 11, where S/N ≈ 8. For mK = 11, the
other two parameters (Pcyc, t0) are also determined to be approx-
imately 8 months and 6 months, respectively, with high preci-
sion. We therefore conclude that the seismic travel-time method
is a valuable tool for detecting activity cycles in Sun-like stars.

4.3. The case of HD 173701

In order to further illustrate this point, we examine the bright
star HD 173701 (KIC 8006161) observed by the Kepler mis-

sion, with a magnitude of mK = 7.4. Previous studies by Kiefer
et al. (2017) and Salabert et al. (2018) reported strong activ-
ity variations in the p-mode frequency shifts during the years
2010 – 2014 (see Fig.16A). Additionally, Karoff et al. (2018)
used spectroscopic measurements of the chromospheric emis-
sion from multiple epochs spanning from 1979 to 2015 and de-
termined that the star has an activity cycle with a period of 7.4 yr;
during the Kepler observations, it was in the rising phase of this
cycle (see their figure 5).

Here, we analyze the star HD 173701 using the methods dis-
cussed above and compare with the results from Salabert et al.
(2018). We divided the data collected by Kepler into segments
of T = 90 days in length with an overlap of 45 days. In each seg-
ment, we measured the travel times and computed the photomet-
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Fig. 12. Comparison between photometric variability, p-mode frequency shifts, and seismic travel times. The data analyzed here were divided into
overlapping segments of T = 365 days in length with a sampling time of 91.25 days. The three arrows correspond to July 2000, September 2001,
and October 2003, as in Figure 11. The bottom right panel shows the scatter plot between travel times and mode frequencies. The center-right panel
shows the scatter plot between travel times and photometric variability. In the left bottom panel, the gray line shows smoothed sunspot number.
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Fig. 13. Quasi-biennial variations in τ and ⟨δν⟩, and RMS time series during solar cycles 23 and 24, normalized by their standard deviations. The
data analyzed here were divided into overlapping segments of T = 365 days in length with a sampling time of 91.25 days. The three data sets were
filtered in the range 1.5–3.5 yr using a Gaussian filter.

Fig. 14. Comparison between the solar VIRGO/SPM observations and simulated Sun-as-a-Kepler-Star data. Example one-year time series of (A)
VIRGO/SPM observations and (B–D) simulated Sun-as-a-Kepler-star data for stars of different visual magnitudes. (E-H) P-mode power spectra
near 3 mHz. The values in the upper-right corners give the power ratios between the height of the (l = 0) peak at 3.097 mHz and the noise
background. (I–L) Filtered data in the p-mode frequency range 1–5 mHz.

ric variability. The seismic activity variations inferred from the
travel-time measurements and photometric variability are shown
in Fig. 16. Our measurements (Fig. 16B) and those of Salabert
et al. (2018) (Fig. 16A) show similar temporal variations over the
period of Kepler days from 250 to 1150 (see Figs. 16A and B).
This includes minima of activity at ∼ 500 and 800 days, a local
maximum of activity at 750 days, as well as a rising phase from
800 to 1100 days. Beyond approximately 1150 days, the two
datasets are noticably different: while the Salabert et al. (2018)
data show an increase in activity, our data reach a plateau. In
Fig. 16C, we show the evolution of the photometric variability,
which differs from the seismic data, except for a common min-

imum of activity at 500 days. We conclude that the two seismic
methods give comparable results with similar error bars, while
the photometric variability provides an independent diagnostic
of stellar activity (as in the case of the Sun).

5. Conclusion

In this work, we describe a new method specifically designed to
detect temporal changes in seismic data due to stellar activity,
which is simpler than fitting the frequency splittings (cf. Gizon
2002; Chaplin et al. 2003; Benomar et al. 2023). Our method
works for the Sun and for the bright Kepler star HD 173701.
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Fig. 15. Detectability of the solar cycle in the average travel times in a case of Sun-as-a-Kepler-star observations. (A, C, E) Simulated travel
times for distant solar analogs obtained by adding photon noise to the VIRGO observations. The apparent Kepler magnitude mK is indicated on
each panel. (B, D, F) Photometric variability (RMS ) from the same simulated time series. (G, H, I) Cycle parameters extracted from fits to the
travel times (orange curves in panels A, C, E), τ̃fit(t) = −a cos

(
2π(t − t0)/Pcyc

)
. The means and the error bars are estimated from 20 independent

realizations. The green curve shows the standard deviation of the cycle amplitude a, denoted by σa. (J) S/N for the activity cycle amplitude, a/σa,
versus Kepler magnitude.

Fig. 16. Variability of the Kepler star HD 173701 (KIC 8006161) as inferred from (A) p-mode frequency shifts by Salabert et al. (2018), (B)
average seismic travel-time shift from our work and (C) photometric variability. The vertical errors bars correspond to ±1 standard deviations. The
horizontal error bars represent the observation duration for each measurement (90 days).
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We measured multiple-skip travel times using a cross-correlation
technique originally developed in local helioseismology. Sur-
prisingly, we find that the signature of the solar cycle is strongest
in odd skips from 17 to 31 (i.e., at time lags in the range of 35–
64 hours).

However, we note that the present method focuses only on
the asphericity measurements and does not provide any informa-
tion on other important stellar parameters, such as stellar rotation
rate or inclination angle. Thus, in its current form, our method is
no substitute for the peak bagging method. Despite this limita-
tion, we expect the method to be useful for analyzing the seismic
data from stars to be observed by the upcoming PLATO mission
(Rauer et al. 2016).
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